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1. Introduction

The last decade saw a revival of interest in theories with extra dimensions and brane-world

scenarios. In 1996, Horava and Witten [1] showed that 11D supergravity on a manifold

with boundary (or on S1/Z2 orbifold) arises as a low energy limit of the strongly coupled

heterotic string theory. Three years later, Randall and Sundrum [2] demonstrated that a

simpler 5D construction with a cosmological constant in the bulk is sufficient to naturally

solve the gauge hierarchy problem and leads to interesting phenomenological consequences.

A minimal supersymmetric version of the Randall-Sundrum scenario, with just the

tension terms on the branes, is by now well understood [3 – 6]. Some progress has been

made in including additional matter fields on the branes (see ref. [7] and references therein),

but the construction is not yet complete. One interesting observation of ref. [7] is that the

supersymmetric bulk-brane coupling (in the orbifold picture) in both the 11D and 5D cases

has two basic features in common:

1) the field strength of the bulk gauge field is shifted so that it satisfies a modified

Bianchi identity; and

2) supersymmetry transformation of the “orthogonal” component of the gauge field

(C11AB in 11D and B5 in 5D) is modified accordingly.

Besides these modifications, the simplest version of the coupling (to the 2-Fermi order)

requires only adding the Noether coupling term to the free brane Lagrangian.

Supersymmetric bulk-brane coupling can be nicely formulated using 4D superfields.

The original idea is due to Mirabelli and Peskin [8] (who worked with supermultiplets in-

stead of superfields); in the superfield language, the method was developed and generalized

to dimensions higher than five in ref. [9]. Although this method has already been widely

used, the basic features of the bulk-brane coupling listed above have not yet been explained

by it. In this paper, we will fill in the gap.

In our discussion, we will use the toy (globally supersymmetric) model of Mirabelli

and Peskin, with an abelian 5D vector multiplet in the bulk. In the orbifold picture, the

4D vector (Am) and the 4D scalar (A5) components of the gauge field AM have opposite

parities. Instead of choosing Am to be even, as in ref. [8], we will choose it to be odd

to make contact with the supergravity constructions (where CABC in 11D and Bm in 5D

are odd). This also flips the parities of the 4D superfields used to describe the 5D vector

multiplet, compared to refs. [8, 9]. We will find that this model reproduces the features of

the supergravity bulk-brane coupling surprisingly well.

Our key results are as follows. In the orbifold picture (OP), recovering the right com-

ponent structure of the coupling from its superfield form requires a certain field redefinition

that makes all bulk fields except A5 non-singular. In the boundary picture (BP), the sin-

gularity of A5 is replaced by the presence of a special boundary compensator K. In both

cases, the boundary condition on the odd part of the gauge field is Am = Jm, where

Jm is a function of the brane/boundary fields. This boundary condition is required for

supersymmetry of the action in the BP, but not in the OP.
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The structure of the paper is best seen from the Contents. We note here only that

the agreement with the supergravity constructions is achieved in section 4.5, and more

explicitly in the example of section 5.4.

2. Mirabelli-Peskin model with odd Am

In this section, we review the essentials of the 5D gauge supermultiplet, both in the com-

ponent formulation and using 4D N = 1 superfields; OP and BP are defined here. Our

conventions are the same as in ref. [11]; supersymmetry conventions follow closely those of

Wess and Bagger [13].

2.1 5D vector multiplet

The abelian 5D gauge supermultiplet consists of a gauge field AM (M = 0, 1, 2, 3, 5), a

real scalar Φ, a symplectic-Majorana spinor (gaugino) Λi (i = 1, 2), and a triplet of real

auxiliary fields Xa (a = 1, 2, 3). The Lagrangian for this multiplet is

L5 = −1

4
FMNFMN − 1

2
∂MΦ∂MΦ − i

2
Λ̃iΓM∂MΛi +

1

2
XaXa . (2.1)

The corresponding supersymmetry transformations are

δHAM = iH̃iΓMΛi

δHΦ = iH̃iΛi

δHXa = H̃i(σa)i
jΓM∂MΛj

δHΛi = δ′HΛi + δ′′HΛi, (2.2)

where we made the following split,

δ′HΛi = (ΣMNFMN + ΓM∂MΦ)Hi, δ′′Hλi = Xa(σa)i
jHj, (2.3)

separating out the auxiliary part of the transformation. (The supersymmetry parameter

Hi is a constant symplectic-Majorana spinor.) Under the supersymmetry transformations,

the Lagrangian varies into a total derivative. This is to be compared with the general

variation, when one also finds a total derivative plus terms that vanish only when equations

of motion (EOM) are used. The total derivatives in these two cases are similar, but differ

in the fermionic parts. In the case at hand, we find

δL5 = (EOM) + ∂MKM , δHL5 = ∂MK̃M , (2.4)

where

KM = −FMNδAN − δΦ∂MΦ − i

2
Λ̃iΓMδΛi

K̃M = −FMNδHAN − δHΦ∂MΦ +
i

2
Λ̃iΓMδ′HΛi −

i

2
Λ̃iΓMδ′′HΛi. (2.5)

The total derivatives are irrelevant on the orbifold, but essential in the boundary picture.

– 3 –
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2.2 OP, BP and N = 1 supersymmetry

In the orbifold picture (OP), the 5D space is R
1,4 with a Z2 symmetry realized as a

reflection x5 ≡ z → −z. The “fixed point” at z = 0 is a 4D plane that we call a “brane”.

In the boundary picture (BP), the 5D space is M = R
1,3 × [0,+∞), with boundary at

z = 0. In both cases, it is convenient to make the “5 → 4” split, using M = {m, 5}
(m = 0, 1, 2, 3), and to convert symplectic-Majorana spinors into pairs of two-component

spinors: Λi → (λ1, λ2), Hi → (η1, η2). This leads to the following form of the Lagrangian, 1

L5 = −1

4
FmnFmn − 1

2
Fm5F

m5 − 1

2
∂mΦ∂mΦ − 1

2
∂5Φ∂5Φ +

1

2
X12X

∗
12 +

1

2
X2

3

−
[

i

2
λ1σ

m∂mλ1 +
i

2
λ2σ

m∂mλ2 +
1

2
(λ2∂5λ1 − λ1∂5λ2) + h.c.

]
. (2.6)

When a brane/boundary is present, we can preserve only a half of the N = 2 supersym-

metry, parametrized by η1 and η2. Without loss of generality, we set

η1 = η, η2 = 0. (2.7)

This gives the following N = 1 supersymmetry transformations,

δηAm = iησmλ1 + h.c.

δηA5 = −ηλ2 + h.c.

δηΦ = −iηλ2 + h.c.

δηλ1 = σmnηFmn + i(X3 − ∂5Φ)η

δηλ2 = −iσmηFm5 − σmη∂mΦ − iX12η

δηX12 = 2iη∂5λ1 − 2ησm∂mλ2

δηX3 = −iη∂5λ2 − ησm∂mλ1 + h.c. (2.8)

In the orbifold picture, we must choose parity assignments for all fields and parameters.

We are interested in the case when η1 is even and Am is odd, which leads to the following

set of assignments, 2

even : A5, λ2, Φ, X12, η1 odd : Am, λ1, X3, η2 . (2.9)

With these assignments, the Lagrangian is even, whereas the equations of motion and

supersymmetry transformations are parity covariant.

1In our notation, Fmn = ∂mAn − ∂nAm, Fm5 = ∂mA5 − ∂5Am, X12 = X1 + iX2.
2Under the Z2 reflection, each field f(x, z) is mapped into f(x,−z) = P [f ]f(x, +z) with P [f ] = ±1. We

call P [f ] = +1 fields “even” and P [f ] = −1 fields “odd”.
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2.3 N = 1 superfields V2 and Φ2

N = 1 supersymmetry is most conveniently described in terms of N = 1 superfields. For

the 5D vector multiplet, we need two 4D N = 1 superfields: a gauge superfield V2 and

a chiral superfield Φ2.
3 If we take V2 in the Wess-Zumino (WZ) gauge (see appendix B

for a discussion of this choice), then the relation between the component bulk fields and

components of the superfields is given by [9, 10]

V2 = (0, 0, 0; Am, λ1, X3 − ∂5Φ)

Φ2 = (Φ + iA5, −i
√

2λ2, −X12). (2.10)

Here and henceforth we represent superfields by listing their components in a definite

order (see appendix A). The supersymmetry transformations (2.8) are reproduced by the

following superfield transformations,

δηV2 = (ηQ + ηQ)V2 + Λ2(η) + Λ2(η)†

δηΦ2 = (ηQ + ηQ)Φ2 + 2∂5Λ2(η), (2.11)

where the compensating gauge transformation (keeping V2 in the WZ gauge) is given by

Λ2(η) =

(
0,

1√
2
σmηAm, −iηλ1

)
. (2.12)

Similarly, the bulk U(1) gauge transformation,

δuAM = ∂Mu ⇔ δuAm = ∂mu, δuA5 = ∂5u, (2.13)

is reproduced by the superfield gauge transformation

δuV2 = Λ2(u) + Λ2(u)†, δuΦ2 = 2∂5Λ2(u) (2.14)

with the following parameter,

Λ2(u) =

(
i

2
u, 0, 0

)
. (2.15)

2.4 Superfield Lagrangian

The Lagrangian L5 is gauge invariant and, therefore, should be constructed out of gauge

invariant superfields. Two basic gauge invariant superfields are 4

Z2 = ∂5V2 − 1

2
(Φ2 + Φ2

†), ηW2 = −1

4
ηαDDDαV2 . (2.16)

3The subscript “2” on V2 and Φ2 indicates that these are bulk superfields. We reserve V and Φ for

denoting brane-localized superfields.
4We hide the spinor index α on W2 by contracting it with another spinor. For the definition of the

supersymmetry operator Qα and the covariant superspace derivative Dα, see ref. [13].
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Their components are related to the bulk fields in the following way,

Z2 =
(
− Φ, λ2, −iX12; −Fm5, ∂5λ1, ∂5(X3 − ∂5Φ)

)

ηW2 =
(
− iηλ1,

1√
2

[
η(X3 − ∂5Φ) + iσmnηFmn

]
, ησm∂mλ1

)
. (2.17)

The superfield Lagrangian that reproduces L5 up to a total derivative is given by

L′
5 =

1

4

∫
d2θ W2

2 + h.c. +

∫
d2θd2θ Z2

2

=

∫
d2θd2θ

[1

8
V2DαDDDαV2 + Z2

2
]
, (2.18)

where the second form is particularly suited for deriving superfield equations of motion (and

boundary conditions) and allows us to omit the overall superspace integration.5 Writing

L′
5 in components and comparing with L5, eq. (2.6), we find

L′
5 = L5 − ∂5Y

′, Y ′ = Φ(X3 − ∂5Φ) +
1

2
(λ1λ2 + h.c.). (2.19)

In terms of the actions, on a manifold with boundary M = R
1,3 × [0,+∞), we have

S′
5 =

∫

M
L′

5, S5 =

∫

M
L5 ⇒ S′

5 = S5 +

∫

∂M
Y ′. (2.20)

3. Bulk-brane coupling in superfields

In this section, we construct supersymmetric coupling of the bulk 5D gauge multiplet to

the brane/boundary. The coupling gives rise to a boundary condition V2

+0
= J, where J

is a function of brane localized superfields V, Φ, and a special compensator superfield K

that, in the orbifold picture, corresponds to the singular part of Φ2.

3.1 Boundary picture

In the previous section, we arrived at the following superfield action on a manifold with

boundary M,

S′
5 =

∫

M

[1

8
V2DD

2
DV2 + Z2

2
]
. (3.1)

Its general variation gives

δS′
5 =

∫

M

[
− Z2δΦ2 + h.c. +

(1

4
DD

2
DV2 − 2∂5Z2

)
δV2

]
−

∫

∂M
2Z2δV2. (3.2)

5The superspace integral
R

d2θd2θ is implicit in the expressions for actions and Lagrangians in the rest

of the paper. Note also that we omit total ∂m derivatives, as they are irrelevant in both the orbifold and

boundary pictures. Total ∂5 derivatives, however, are kept.
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The bulk equations of motion, therefore, are 6

DDZ2 = 0,
1

4
DD

2
DV2 − 2∂5Z2 = 0, (3.3)

while the natural boundary condition, obtained by requiring the boundary piece of δS′
5 to

vanish for arbitrary δV2, is 7

Z2

+0
= 0. (3.4)

This is the reason why S′
5 is the right action for lifting on the orbifold with odd Z2 (that

is, with even V2 and odd Φ2). Coupling bulk fields to brane localized matter would make

this boundary condition inhomogeneous [11].

In this paper, we are interested in the other case, when V2 is odd and Φ2 is even

(therefore, Z2 is even). The appropriate action is easy to guess. We define

S′′
5 = S′

5 +

∫

∂M
2Z2V2. (3.5)

Its general variation gives the same equations of motion in the bulk, but the boundary

term and, therefore, the natural boundary condition are now different:

δS′′
5 = (EOM) +

∫

∂M
2V2δZ2 ⇒ V2

+0
= 0. (3.6)

This shows that S′′
5 is the right action for lifting on the orbifold with odd V2.

Adding boundary interaction that leads to the boundary condition V2

+0
= J is now

straightforward. For the complete bulk-plus-boundary action we take

S = S′′
5 +

1

2

∫

∂M
L4 −

∫

∂M
2Z2J

= S′
5 +

1

2

∫

∂M
L4 +

∫

∂M
2Z2(V2 − J), (3.7)

where L4 is a part of the boundary Lagrangian that does not depend on the bulk fields

and is supersymmetric on its own. The general variation of the action gives the required

boundary condition:

δS = (EOM) +

∫

∂M
2(V2 − J)δZ2 ⇒ V2

+0
= J. (3.8)

However, despite being written in terms of superfields, the action is not yet guaranteed to

be supersymmetric. Supersymmetry transformations of V2 and Φ2, given in eq. (2.11),

are a combination of the standard piece (with the linear supersymmetry operator acting on

them) and a special gauge transformation. As a result, the action can be supersymmetric

6Equations of motion for chiral superfields are found by applying DD to what comes out from the general

variation. See ref. [13] for more details.
7The symbol

+0
= is used to denote boundary conditions in both the boundary and orbifold pictures. In

the orbifold picture, it means “on the positive side of the brane”, at z = +0.
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only when it is gauge invariant. With V2 appearing in the action explicitly, this can be

achieved only if the gauge and supersymmetry transformations of J match those of V2.

That is, the action is supersymmetric provided J transforms as follows,

δuJ = Λ
(+)
2

(u) + Λ
(+)
2

(u)†, δηJ = (ηQ + ηQ)J + Λ
(+)
2

(η) + Λ
(+)
2

(η)†, (3.9)

where the superscript “(+)” indicates restriction of the bulk quantity to the boundary.

One can construct J = J(V,Φ) with the above transformation laws. However, this

inevitably requires relating bulk and boundary gauge invariances and leads to a rather

strange form of the coupling. Another way to satisfy eq. (3.9), motivated by the orbifold

picture construction (see below), is to introduce a special boundary superfield K with the

following transformation properties,

δuK = Λ
(+)
2

(u), δηK = (ηQ + ηQ)K + Λ
(+)
2

(η). (3.10)

If we now define

J = K + K† + G, (3.11)

with G = G(V,Φ) transforming as a gauge invariant quantity,

δuG = 0, δηG = (ηQ + ηQ)G, (3.12)

then J transforms precisely as in eq. (3.9). This way we do not need to relate the bulk gauge

transformation to a boundary one, which means that introducing the superfield K increases

gauge symmetry of the action. Therefore, we can call K a “compensator” superfield.

With the superfield K present, we do not need a boundary gauge transformation, so

that, for example, G = Φ†Φ is a valid choice. Note also that K does not appear in L4,

but comes only with J. As a result, its equation of motion is

DDZ2

+0
= 0. (3.13)

As this coincides with the restriction of the bulk equation of motion for Φ2, eq. (3.3), to

the boundary, our construction is consistent.

3.2 OP with singular Φ2

In the orbifold picture, the bulk-plus-brane Lagrangian, corresponding to the bulk-plus-

boundary action (3.7), turns out to be given by

L =
1

8
V2DD

2
DV2 +

[
Z2 − 2Gδ(z)

]2
+ L4δ(z). (3.14)

The first part of it, explicitly showing V2, is gauge invariant (up to a total ∂m derivative).

As Z2 is gauge invariant, the brane-localized term G must also be invariant under the bulk

gauge transformation for the Lagrangian to be supersymmetric.

– 8 –
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The full square structure of the interaction is required to guarantee that equations of

motion for the bulk and brane fields are consistent with each other. We have

δL
δV2

≡ 1

4
DD

2
DV2 − 2∂5

[
Z2 − 2Gδ(z)

]
= 0

δL
δV

≡ δ(z)

{
−4

[
Z2 − 2Gδ(z)

] δG

δV
+

δL4

δV

}
= 0 , (3.15)

so that both equations require Z2 to have the same singular part,

Z2 = 2Gδ(z) + n.s., (3.16)

where “n.s.” stands for non-singular terms. As Z2 = ∂5V2 − 1
2(Φ2 + Φ2

†), the singular

term can arise from a jump in the odd superfield V2,

∂5V2 = 2δ(z)V2
(+) + n.s., (3.17)

or from the even superfield Φ2 having a singular part. If we write

Φ2 = Φ̃2 + 4Kδ(z), (3.18)

with Φ̃2 being non-singular, we find that eq. (3.16) gives rise to a boundary condition

V2

+0
= J = K + K† + G , (3.19)

which coincides exactly with the boundary condition found in the boundary picture. More-

over, the gauge transformation of Φ2, eq. (2.14), when split into the singular and non-

singular parts, gives

δuK = Λ
(+)
2

(u), δuΦ̃2 = 2∂5Λ2(u) − 4Λ
(+)
2

(u)δ(z), (3.20)

which implies that the gauge and supersymmetry transformations of K are exactly as in

eq. (3.10). We conclude, therefore, that the boundary compensator K corresponds to the

singular part of Φ2 in the orbifold picture.

3.3 OP with non-singular Φ2

There is another way to approach bulk-brane coupling in the orbifold picture. Let us

require that Φ2 be non-singular. This forces us to modify gauge and supersymmetry

transformations of Φ2 in a way that makes them non-singular, which gives

δ′uΦ2 = 2∂5Λ2(u) − 4Λ
(+)
2

(u)δ(z)

δ′ηΦ2 = (ηQ + ηQ)Φ2 + 2∂5Λ2(η) − 4Λ
(+)
2

(η)δ(z). (3.21)

With this modification, Z2 is no longer gauge invariant

δ′uZ2 = 2
[
Λ2

(+)(u) +
(
Λ2

(+)(u)
)†]

δ(z). (3.22)

– 9 –
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Therefore, the right bulk-plus-brane Lagrangian now is

L =
1

8
V2DD

2
DV2 +

[
Z2 − 2Jδ(z)

]2
+ L4δ(z), (3.23)

where J is required to transform as in eq. (3.9) in order for L to be supersymmetric. As

in the boundary picture, we are lead to J of the form (3.11), explicitly containing the

compensator K. Note that, unlike the boundary picture case, we can make a replacement

Λ2
(+)(η) −→ ΛJ(η) ≡ Λ2

(+)(η)∣∣V2=J
(3.24)

in the supersymmetry transformations of J, K, and Φ2, and the Lagrangian (3.23) would

still be supersymmetric without using boundary conditions.

The two orbifold picture constructions are, obviously, related by the field redefini-

tion (3.18). The advantage of the formulation with a singular Φ2 is that it avoids explicit

appearance of the compensator K. We will see more explicitly how the two approaches are

related when we consider the component formulation.

4. Bulk-brane coupling in components

In this section, we show how to go from the superfield bulk-brane coupling established in the

previous section, to its component form. In the boundary picture, we find that the Y -term

of ref. [6] arises naturally from the extra superfield boundary term in S′′
5 . In the orbifold

picture, we find that in order to arrive at the form of the coupling established for the

Horava-Witten and Randall-Sundrum scenarios, one has to do a partial field redefinition.

4.1 Boundary conditions

In both the boundary and orbifold picture, the boundary condition is given by eq. (3.19).

As J is a real vector superfield, we write its components as follows (see appendix A)

J = (CJ , χJ , MJ ; Jm, λJ , DJ). (4.1)

With V2 being in the WZ gauge and given by eq. (2.10), the boundary condition (3.19)

splits into two sets of component boundary conditions. The first set requires the three

lowest components of J to vanish:

CJ = χJ = MJ = 0. (4.2)

The second set gives the actual boundary conditions in the component formulation,

Am
+0
= Jm, λ1

+0
= λJ , X3 − ∂5Φ

+0
= DJ . (4.3)

– 10 –
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4.2 Compensator (super)field

The set of restrictions on J, given in eq. (4.2), fixes K up to a single real field K. To see

how this happens, we first define the components of G and K in a general way

G = (CG, χG, MG; Gm, λG, DG), K = (φK , ψK , FK). (4.4)

Writing J = K + K† + G in components, we find

CJ = φK + φ∗
K + CG, χJ = −i

√
2ψK + χG, MJ = −2iFK + MG

Jm = −i∂m(φK − φ∗
K) + Gm, λJ = λG, DJ = DG. (4.5)

The restriction (4.2) now gives three equations on the components of K, which leave un-

determined only the imaginary part of its lowest component. Denoting the latter by K,

we have

K =

(
−1

2
CG +

i

2
K, − i√

2
χG, − i

2
MG

)
. (4.6)

With this definition of K, the non-zero components of J become

Jm = Gm + ∂mK, λJ = λG, DJ = DG. (4.7)

Gauge and supersymmetry transformations of the components of K and G can be

found from the superfield transformations given in eqs. (3.10) and (3.12), respectively.

(For supersymmetry transformations, eq. (A.4) is useful.) We find, for example,

δuφK =
i

2
u(+), δηφK =

√
2ηψK

δuCG = 0, δηCG = iηχG + h.c. (4.8)

Applying these transformations to the lowest component of eq. (4.6), we obtain the follow-

ing gauge and supersymmetry transformations of K,

δuK = u(+), δηK = −ηχG + h.c. (4.9)

Analogous treatment of the other two components in eq. (4.6) reproduces the boundary

conditions (4.3) for Am and λ1. Note that these boundary conditions would not arise here

if we make the replacement (3.24) in the supersymmetry transformation of K.

4.3 Boundary picture

The boundary picture action S′′
5 , eq. (3.5), appropriate for the odd Am, differs from the

original bulk action S5 by a boundary term that we call Y -term [6, 11],

S′′
5 = S5 +

∫

∂M
Y ′′. (4.10)
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This Y ′′-term is a sum of the Y ′-term for the action S′
5, eq. (2.20), and of the boundary

superfield term in eq. (3.5),

Y ′′ = Y ′ + 2(Z2V2)∣∣θ2θ
2 = Fm5A

m − 1

2
(λ1λ2 + h.c.). (4.11)

This way we reproduce the Y -term of the form suggested in ref. [6], with the Fm5A
m term

present. For the total bulk-plus-boundary action (3.7), we find

S = S5 +

∫

∂M

[
Fm5A

m − 1

2
(λ1λ2 + h.c.)

]

+
1

2

∫

∂M

[
L4 + 2ΦDJ + 2(λ2λJ + h.c.) − 2Fm5J

m
]
. (4.12)

As we will show in section 5.2, this action is supersymmetric under the bulk supersymmetry

transformations (2.8) and appropriate transformations of the components of J. We will

find, however, that showing this requires using the boundary condition (4.3) for Am (and

also the one for λ1, unless we eliminate auxiliary fields).

We can simplify the form of the action by explicitly using some or all of the boundary

conditions (4.3). Using the one for Am, we obtain

S1 = S5 +

∫

∂M

[
− 1

2
(λ1λ2 + h.c.)

]

+
1

2

∫

∂M

[
L4 + 2ΦDJ + 2(λ2λJ + h.c.)

]
. (4.13)

Using the boundary conditions for both Am and λ1, we get

S2 = S5 +
1

2

∫

∂M

[
L4 + 2ΦDJ + (λ2λJ + h.c.)

]
. (4.14)

We will find that supersymmetry of S1 depends on using the boundary conditions for Am

and λ1, whereas S2 is supersymmetric provided the third boundary condition in eq. (4.3)

is also used. The reason for this is explained in appendix C.

4.4 OP with singular fields

In the orbifold picture, all δ(z)-dependent terms in the bulk-plus-brane Lagrangian (3.14)

come from the following part

[
Z2 − 2Gδ(z)

]2∣∣θ2θ2
=

−
[
λ2 − 2χGδ(z)

][
∂5λ1 − 2λGδ(z) +

i

2
σm∂m

[
λ2 − 2χGδ(z)

]]
+ h.c.

−
[
Φ + 2CGδ(z)

][
∂5(X3 − ∂5Φ) − 2DGδ(z) − 1

2
∂m∂m

[
Φ + 2CGδ(z)

]]

−1

2

[
Fm5 + 2Gmδ(z)

]2
+

1

2

[
X12 − 2iMGδ(z)

][
X∗

12 + 2iM∗
Gδ(z)

]
. (4.15)
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Dropping some total ∂5 derivatives, irrelevant in the orbifold picture, the total Lagrangian

can be brought to the following form

L = L5 +
[
L4 + B1

]
δ(z) + B2δ(z)2 + B3δ

′(z), (4.16)

where

B1 = 2λ2λG + 2iχGσm∂mλ2 − iX∗
12MG + h.c.

−2Fm5G
m + 2ΦDG + 2CG∂m∂mΦ

B2 = −4χGλG − 2iχGσm∂mχG + h.c.

−2GmGm + 2CG∂m∂mCG + 4CGDG + 2MGM∗
G

B3 = −2χGλ1 + 2CG(X3 − ∂5Φ). (4.17)

This Lagrangian, by construction, is supersymmetric under the original supersymmetry

transformations (2.8) of the bulk fields. However, its δ(z)-dependent terms happen to be

more complicated than those in the (more complicated) supergravity theories. We will see

next that this apparent paradox can be resolved by a simple field redefinition.

4.5 OP with singular A5

From eq. (3.16), we know that Z2 − 2Gδ(z) is non-singular. Using the component forms

of Z2 and G, eqs. (2.17) and (4.4), respectively, we find that the following fields,

Φ̃ ≡ Φ + 2CGδ(z)

λ̃2 ≡ λ2 − 2χGδ(z)

X̃12 ≡ X12 − 2iMGδ(z)

X̃3 ≡ X3 + 2CGδ′(z), (4.18)

are non-singular.8 A glance at eq. (4.15) shows that transforming to the new fields absorbs

most of the δ(z) terms. Performing the field redefinition, and omitting the tildes, we find

L = L(F)
5 +

[
L4 + 2ΦDG + 2(λ2λG + h.c.)

]
δ(z), (4.19)

where L(F)
5 is obtained from the original Lagrangian L5, eq. (2.6), by replacing Fm5 with

Fm5 = Fm5 + 2Gmδ(z). (4.20)

Performing the redefinition (4.18) in the supersymmetry transformations (2.8) requires

using the transformations of the components of G. Since G transforms as in eq. (3.12),

8When we say that a field is non-singular, we mean that it is non-singular when equations of motion are

used. Note that we reserve the word “on-shell” to mean “when auxiliary fields are eliminated.”
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its components transform according to eq. (A.4). After a short calculation, we find the

following modified supersymmetry transformations of the bulk fields,

δηAm = iησmλ1 + h.c.

δηA5 = −ηλ2 − 2ηχGδ(z) + h.c.

δηΦ = −iηλ2 + h.c.

δηλ1 = σmnηFmn + i(X3 − ∂5Φ)η

δηλ2 = −iσmη
[
Fm5 + 2Gmδ(z)

]
− σmη∂mΦ − iX12η

δηX12 = 2iη
[
∂5λ1 − 2λGδ(z)

]
− 2ησm∂mλ2

δηX3 = −iη∂5λ2 − ησm∂mλ1 + h.c. (4.21)

The modifications can be summarized as follows: 1) replace Fm5 with Fm5, 2) modify the

transformation of A5 by adding the following singular piece

δ(s)
η A5 = −2(ηχG + h.c.)δ(z), (4.22)

and 3) modify the transformation of X12 (the even auxiliary field) by terms that make

it non-singular when the boundary conditions (4.3) are used. When auxiliary fields are

eliminated, we need only the first two prescriptions. Therefore, in the on-shell formulation,

we match the supergravity bulk-brane coupling construction of ref. [7].

Note that after the redefinition (4.18), we still have one singular field left: A5. From

eq. (3.16) and the boundary conditions (4.3), we have

Fm5 + 2Gmδ(z) = n.s., Am
+0
= Gm + ∂mK ⇒ A5 = 2Kδ(z) + n.s. (4.23)

We see that the singular part of A5 is directly related to the compensator field K. If we

redefine A5 to make it non-singular, we find that its supersymmetry transformation also

becomes non-singular:

Ã5 = A5 − 2Kδ(z) ⇒ δηÃ5 = −ηλ2 + h.c. (4.24)

If we now replace A5 with Ã5 in the expression for Fm5, eq. (4.20), we find that Gm gets

replaced by Jm = Gm + ∂mK:

Fm5 = Fm5 + 2Gmδ(z) = F̃m5 + 2Jmδ(z). (4.25)

As we will see next, after this final field redefinition we come exactly to the construction

in which the superfield Φ2 is non-singular from the start.

4.6 OP with non-singular fields

In the case with non-singular Φ2, the bulk-plus-brane Lagrangian is given by eq. (3.23).

As the lowest components of J (unlike G) vanish, CJ = χJ = MJ = 0, the component

form of the Lagrangian is simple without any field redefinitions:

L = L(F)
5 +

[
L4 + 2ΦDJ + 2(λ2λJ + h.c.)

]
δ(z). (4.26)
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As before, we must replace Fm5 by Fm5 that is now given by

Fm5 = Fm5 + 2Jmδ(z). (4.27)

Superfield supersymmetry transformations are now different from those in eq. (2.11). They

are modified as in eq. (3.21) so that the transformation of Φ2 is non-singular. We should,

however, make the choice: whether or not to make the replacement (3.24). Because of the

last statement in section 4.2, the component Lagrangian will be supersymmetric without

using boundary conditions provided we do make the replacement (3.24). The component

supersymmetry transformations then become

δηAm = iησmλ1 + h.c.

δηA5 = −ηλ2 + h.c.

δηΦ = −iηλ2 + h.c.

δηλ1 = σmnηFmn + i(X3 − ∂5Φ)η

δηλ2 = −iσmη
[
Fm5 + 2Jmδ(z)

]
− σmη∂mΦ − iX12η

δηX12 = 2iη
[
∂5λ1 − 2λJδ(z)

]
− 2ησm∂mλ2

δηX3 = −iη∂5λ2 − ησm∂mλ1 + h.c. (4.28)

This differs from the original transformations (2.8) by δ(z)-dependent modifications that

are now all covered by one simple rule [5, 6, 11]: the modifications must make the trans-

formations non-singular when the boundary conditions are used.

We conclude that there are two alternative simple forms of the bulk-brane coupling

in the orbifold picture: one with the compensator K appearing explicitly via Jm, and the

other where the role of the compensator is played by the singular part of A5. The two

formulations are related to each other by the redefinition (4.24) of A5.

5. On-shell coupling

In this section, we go on-shell (eliminate auxiliary fields) and check explicitly that the bulk-

plus-brane/boundary actions we constructed are indeed supersymmetric. We find that

some boundary conditions have to be used for supersymmetry in the boundary picture. At

the end of the section, we give an explicit example of a coupled bulk-brane system which

makes contact with the supergravity construction of ref. [7].

5.1 Modified Bianchi identity

As we established, in the orbifold picture, a part of the bulk-brane coupling prescription

consists in replacing Fm5 with Fm5 both in the Lagrangian and in the supersymmetry

transformations. Let us now generalize this to the following shift

FMN ≡ ∂MAN − ∂NAM −→ FMN = FMN + BMN. (5.1)
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On-shell (Xa = 0) and after the shift, the bulk Lagrangian (2.1) turns into

L(F)
5 = −1

4
FMNFMN − 1

2
∂MΦ∂MΦ − i

2
Λ̃iΓM∂MΛi , (5.2)

and the corresponding supersymmetry transformations become

δHAM = iH̃iΓMΛi

δHΦ = iH̃iΛi

δHΛi = (ΣMNFMN + ΓM∂MΦ)Hi. (5.3)

Supersymmetry transformation of the bulk Lagrangian now produces not only the total

derivative, but also extra terms involving BMN:

δHL5 = ∂MK̃M − 1

2
FMNδHBMN − i

2
η̃iΓMNKΛi∂KFMN

K̃M = −FMNδHAN − δHΦ∂MΦ +
i

2
Λ̃iΓMδHΛi. (5.4)

The last term in δHL5 is the famous contribution due to the “modified Bianchi identity.”

Note that in the boundary picture, we have BMN = 0 and the total derivative term is

important; in the orbifold picture, BMN 6= 0 and the total derivative is irrelevant.

5.2 Boundary picture

The bulk-plus-boundary action in the boundary picture is given by eq. (3.7),

S = S5 +

∫

∂M

[
Fm5A

m − 1

2
(λ1λ2 + h.c.)

]

+
1

2

∫

∂M

[
L4 + 2ΦDJ + 2(λ2λJ + h.c.) − 2Fm5J

m
]
. (5.5)

Supersymmetry variation of S5 produces the following boundary term,

δηS5 =

∫

∂M
(−K̃5) =

∫

∂M

[
− Fm5δηAm + δηΦ∂5Φ − 1

2
(λ2δηλ1 − λ1δηλ2 + h.c.)

]
. (5.6)

To find the variation of the total action, we need to know supersymmetry transformations

of Jm, λJ , and DJ . We know that components of G transform as in eq. (A.4), so that, in

particular, 9

δηGm = iησmλG + ∂m(ηχG) + h.c.

δηλG = σmnηGmn + iηDG

δηDG = ησm∂mλG + h.c. (5.7)

From eq. (4.7) and the supersymmetry transformation (4.9) of K, it then follows that

δηJm = iησmλJ + h.c.

δηλJ = σmnηJmn + iηDJ

δηDJ = ησm∂mλJ + h.c. (5.8)

9In our notation, vmn = ∂mvn − ∂nvm, Gmn = ∂mGn − ∂nGm, Jmn = ∂mJn − ∂nJm.
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Using these transformations together with the ones for the bulk fields, eq. (2.8), we find

δηS =

∫

∂M

[
ησmnλ2(Fmn − Jmn) + h.c. + (Am − Jm)δηFm5

]
. (5.9)

For the action (4.13), obtained from S by using the Am boundary condition, we have

δηS1 =

∫

∂M

[
ησmnλ2(Fmn − Jmn) − iησm(λ1 − λJ)Fm5 + h.c.

]
. (5.10)

For the action (4.14), obtained from S1 by using the λ1 boundary condition, we get

δηS2 =

∫

∂M

[1

2
ησmnλ2(Fmn − Jmn) − i

2
ησm(λ1 − λJ)Fm5

− i

2
ηλ2(∂5Φ + DJ ) − 1

2
ησm(λ1 − λJ)∂mΦ + h.c.

]
. (5.11)

We conclude that each action is supersymmetric, and in each case supersymmetry of the

action depends on using some boundary conditions. The basic pattern we observe is: the

more boundary conditions are used to simplify the action, the more of them are needed

to prove its supersymmetry. The way to predict which boundary conditions are needed in

each case is given in appendix C.

5.3 Orbifold picture

In the orbifold picture, with singular A5, we have

Bmn = 0, Bm5 = −B5m = 2Gmδ(z)

Fmn = Fmn, Fm5 = Fm5 + 2Gmδ(z). (5.12)

The bulk-plus-brane Lagrangian is given by eq. (4.19),

L = L(F)
5 + L′

4δ(z), L′
4 = L4 + 2ΦDG + 2(λ2λG + h.c.). (5.13)

Supersymmetry variation of L(F)
5 gives

δηL(F)
5 =

{
2(ησmnλ2 + h.c.)Gmn −Fm5

[
2δηGm + ∂m(δ̃(s)

η A5)
]}

δ(z), (5.14)

where the terms with Gm follow from the BMN terms in eq. (5.4), and the last term follows

from the modification (4.22) in the supersymmetry transformation of A5 with

δ̃(s)
η A5 ≡ −2ηχG + h.c. = 2δηK. (5.15)

Note that the sum of the terms in the square bracket gives 2δηJm. For L′
4, we find

δη(λ2λG + h.c. + ΦDG) = −ησmnλ2Gmn + iησmλGFm5 + h.c., (5.16)

from which we conclude that the total Lagrangian L is supersymmetric, δηL = 0, without

using any boundary conditions.
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5.4 Example

To make contact with the supergravity construction of ref. [7], we consider an example

with one brane-localized chiral superfield Φ and

G = Φ†Φ. (5.17)

With Φ = (φ,ψ, F ), the components of G are given by

CG = φφ∗

χG = −i
√

2φ∗ψ

MG = −2iFφ∗

Gm = i(φ∂mφ∗ − φ∗∂mφ) + ψσmψ

λG =
√

2σmψ∂mφ + i
√

2ψF ∗

DG = 2FF ∗ − 2∂mφ∂mφ∗ −
(
iψσm∂mψ + h.c.

)
. (5.18)

The supersymmetry transformation of the compensator K, eq. (4.9), can now be written

as follows, 10

δηK = i
√

2φ∗ηψ + h.c. = i(φ∗δηφ − φδηφ
∗), (5.19)

which clearly shows that we cannot “gauge fix” the compensator by making it a function

of the matter fields. To complete the setup, we choose

L4 =

∫
d2θd2θΦ†Φ = FF ∗ − ∂mφ∂mφ∗ −

(
i

2
ψσm∂mψ + h.c.

)
. (5.20)

Plugging all the pieces into the bulk-plus-brane Lagrangian (5.13), and eliminating the

auxiliary field F by its equation of motion,

F = −2i
√

2(1 + 4Φ)−1λ2ψ, (5.21)

we find that the on-shell Lagrangian is given by L = L(F)
5 + L′

4δ(z) with

L′
4 = (1 + 4Φ)

[
−∂mφ∂mφ∗ −

(
i

2
ψσm∂mψ + h.c.

)]

+2
√

2(λ2σ
mψ∂mφ + h.c.) − 8(1 + 4Φ)−1(λ2ψ)(λ2ψ). (5.22)

The bulk Lagrangian L(F)
5 is obtained from L5 by replacing Fm5 with

Fm5 = Fm5 + 2Gmδ(z), Gm = i(φ∂mφ∗ − φ∗∂mφ) + ψσmψ. (5.23)

The same substitution must be made in the supersymmetry transformations (2.8), and, in

addition, the transformation of A5 should be modified by adding

δ(s)A5 = 2(δηK)δ(z) = 2i
√

2φ∗ηψδ(z) + h.c. (5.24)

10Note that this form of δηK implies δ
(s)
η A5 = 2i(φ∗δηφ − φδηφ∗)δ(z), which is remarkably similar to

eδC11AB in eq. (2.16) of the first paper in ref. [1].
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With these modifications, the total Lagrangian L is supersymmetric without using any

boundary conditions.

We observe that the whole construction is identical to the one in supergravity [7]. It

is also amusing to note that the brane Lagrangian (5.22) appears to be very similar to the

one in supergravity: (1 + 4Φ) plays the role of the induced metric, λ2 is the “gravitino,”

λ2σ
mψ∂mφ is the “Noether coupling” term, and (λ2ψ)(λ2ψ) represents 4-Fermi terms.

6. Summary and conclusions

In this paper, we showed that the basic features of the supergravity bulk-brane coupling,

present both in the Horava-Witten (11D) and Randall-Sundrum (5D) scenarios, appear also

in the simplified globally supersymmetric model we considered (Mirabelli-Peskin model

with odd Am). Using the 4D N = 1 superfield formulation of the model, we showed

that the full square structure [1] of the coupling in the orbifold picture is present already

on the superfield level (see eq. (3.14)). In transition to the component formulation, one

has to make some field redefinitions (see eq. (4.18)) in order to arrive at the established

form of the coupling. After the redefinition, the full square structure remains only for the

(Fm5 + 2Gmδ(z))2 term in the Lagrangian (4.19). As the redefined fields are non-singular,

the shift Fm5 → Fm5 + 2Gmδ(z) in supersymmetry transformations is required to make

the transformations non-singular. All together, we recover the “modified Bianchi identity”

prescription for the coupling [1].

The only modification of the supersymmetry transformations, in the formulation of

refs. [1, 7], that is not covered by the prescription “make them non-singular” [5, 6, 11]

concerns the “orthogonal” component of the bulk gauge field. In fact, A5 is the only field

in this formulation which is singular. We showed that there is another formulation, where

all fields are non-singular, and where the singular part of A5 is replaced by a compensator

field K. All modifications of the supersymmetry transformations are then covered by one

simple rule.

Although optional in the orbifold picture, the presence of the compensator K is un-

avoidable in the boundary picture construction. In both pictures, the boundary condition

for the odd gauge field Am is Am
+0
= Jm = Gm + ∂mK. The gauge transformation of K,

given in eq. (4.9) (compare also with eq. (13.7) of ref. [6]), guarantees gauge invariance

of the boundary condition. On the other hand, its supersymmetry transformation (4.9) is

such that K together with CG, χG, and MG (the lowest components of G) combine into

one chiral superfield (the compensator superfield K, eq. (4.6)).

Our results shed some more light on the general structure of the supersymmetric bulk-

brane coupling. They should also be useful in obtaining a more explicit (component)

form of the coupling in the supersymmetric Randall-Sundrum scenario starting from the

superfield formulation developed in ref. [12].
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version of this work.

A. Superfield components

Our supersymmetry conventions follow closely those of ref. [13]. For real vector and chiral

superfields, we use the following shorthand notation,

V = (C, χ, M ; vm, λ, D), Φ = (φ, ψ, F ), (A.1)

corresponding to the standard component expansions,

V = iθχ +
i

2
θ2M − iθ2θ

[
λ +

i

2
σm∂mχ

]
+ h.c.

+C − θσmθvm +
1

2
θ2θ2

[
D +

1

2
∂m∂mC

]

Φ =
(
1 + iθσmθ∂m +

1

4
θ2θ2∂m∂m

)
φ +

√
2
(
θ +

i

2
θ2θσm∂m

)
ψ + θ2F . (A.2)

When supersymmetry transformations have the standard form (without additional gauge

transformations),

δηV = (ηQ + ηQ)V, δηΦ = (ηQ + ηQ)Φ, (A.3)

the component transformations are as follows,

δηC = iηχ + h.c.

δηχ = σmη(∂mC + ivm) + ηM

δηM = 2η(λ + iσm∂mχ)

δηvm = iησmλ + ∂m(ηχ) + h.c

δηλ = σmnηvmn + iηD

δηD = ∂m(ησmλ + h.c.)

δηφ =
√

2ηψ

δηψ = i
√

2σmη∂mφ +
√

2ηF

δηF = ∂m(i
√

2ησmψ). (A.4)

Components of gauge invariant superfields, Z2, W2, and G, have exactly this form of

supersymmetry transformations.

B. V2 and Φ2 without WZ

Our bulk superfields transform under supersymmetry according to eq. (2.11),

δηV2 = (ηQ + ηQ)V2 + Λ2(η) + Λ2(η)†

δηΦ2 = (ηQ + ηQ)Φ2 + 2∂5Λ2(η). (B.1)
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Let us proceed without imposing the WZ gauge. If we take the gauge parameter in its

general form, Λ2(η) = (a2, α2, f2) , the component transformations become

δηC2 = iηχ2 + a2 + h.c.

δηχ2 = σmη(∂mC2 + iv(2)
m ) + ηM2 − i

√
2α2

δηM2 = 2η(λ(2) + iσm∂mχ2) − 2if2

δηv
(2)
m = iησmλ(2) + ∂m(ηχ2 − ia2) + h.c

δηλ(2) = σmnηv(2)
mn + iηD2

δηD2 = ∂m(ησmλ(2) + h.c.)

δηφ2 =
√

2ηψ2 + 2∂5a2

δηψ2 = i
√

2σmη∂mφ2 +
√

2ηF2 + 2∂5α2

δηF2 = ∂m(i
√

2ησmψ2) + 2∂5f2. (B.2)

One can check that on fields defined in the following way,

Am = v
(2)
m , Φ + iA5 = −∂5C2 + φ2

λ1 = λ(2), λ2 = ∂5χ2 + i√
2
ψ2

X3 − ∂5Φ = D2, X12 = i∂5M2 − F2, (B.3)

the supersymmetry transformations take the form

δηAm = iησmλ1 + h.c. + ∂mu(η)

δηA5 = −ηλ2 + h.c. + ∂5u(η)

δηΦ = −iηλ2 + h.c.

δηλ1 = σmnηFmn + i(X3 − ∂5Φ)η

δηλ2 = −iσmηFm5 − σmη∂mΦ − iX12η

δηX12 = 2iη∂5λ1 − 2ησm∂mλ2

δηX3 = −iη∂5λ2 − ησm∂mλ1 + h.c., (B.4)

which differs from eq. (2.8) only by the U(1) gauge transformation (2.13) with

u(η) = ηχ2 + ηχ2 + 2 Im(a2). (B.5)

(Note that Re(a2), α2, and f2 affect only the transformations of C2, χ2, and M2.) If it is

required that we stay with the original field content, then the explicit appearance of χ2 is

a problem. To deal with it, we can choose the extra superfield gauge transformation in a

way that removes u(η). The simplest choice that does this is given by

Λ2(η) =

(
− i

2
(ηχ2 + ηχ2), 0, 0

)
. (B.6)
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It affects supersymmetry transformations of only Am and A5, while leaving those of C2,

χ2 and M2 unchanged. A more involved choice,

Λ2(η) =

(
−iηχ2, − i√

2

[
σmη(∂mC2 + iAm) + ηM

]
, −iηλ1 + ησm∂mχ2

)
, (B.7)

makes C2, χ2 and M2 supersymmetry invariant. Therefore, it allows setting these fields to

zero, which would put us into the Wess-Zumino gauge, C2 = χ2 = M2 = 0, while turning

Λ2(η) into the compensating gauge transformation (2.12).

To summarize, the superfield description of the bulk 5D vector multiplet uses two 4D

N = 1 superfields with the following components, 11

V2 = (C2, χ2, M2; Am, λ1, X3 − ∂5Φ)

Φ2 = (Φ + iA5 + ∂5C2, −i
√

2(λ2 − ∂5χ2), −X12 + i∂5M2). (B.8)

If the superfield supersymmetry transformations do not involve a Λ2(η) gauge transforma-

tion, the component supersymmetry transformations differ from the ones in eq. (2.8) by a

χ2-dependent U(1) gauge transformation. The latter can be eliminated by a proper choice

of Λ2(η). Imposing the WZ gauge corresponds to just one of many possible choices.

C. Boundary conditions for supersymmetry

Deriving the component form of the bulk-plus-boundary action (3.7), with V2 and Φ2 as

in eq. (B.8), we encounter the following terms,

2Z2(V2 − J)∣∣θ2θ2
= −Φ(X3 − ∂5Φ − DJ) + Fm5(A

m − Jm) −
[
λ2(λ1 − λJ) + h.c.

]

+ (C2 − CJ)
[
∂5(X3 − ∂5Φ) − ∂m∂mΦ

]

+
[ i

2
X∗

12(M2 − MJ) − (∂5λ1 + iσm∂mλ2)(χ2 − χJ) + h.c.
]
. (C.1)

Without the WZ gauge imposed, the boundary action then depends explicitly on the gauge

degrees of freedom, C2, χ2, and M2. The way to eliminate them without imposing a gauge

is to use a part of the boundary conditions contained in V2

+0
= J,

C2
+0
= CJ , χ2

+0
= χJ , M2

+0
= MJ . (C.2)

This way we arrive at the action (4.12). Having used some of the boundary conditions in

the action, we expect that we would need to use boundary conditions in checking super-

symmetry of the simplified action. As (V2 − J) is a gauge invariant vector superfield, we

have

δη(V2 − J) = (ηQ + ηQ)(V2 − J), (C.3)

11This form of V2 and Φ2 can be obtained from eq. (2.10) by a gauge transformation with the following

parameter: Λ2 =
“

1
2
C2,

i√
2
χ2,

i
2
M2

”
.
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so that its components vary according to eq. (A.4). For example,

δη(C2 − CJ) = iη(χ2 − χJ) + h.c.

δη(χ2 − χJ) = σmη
[
∂m(C2 − CJ) + i(Am − Jm)

]
+ η(M2 − MJ)

δη(M2 − MJ) = 2η
[
(λ1 − λJ) + iσm∂m(χ2 − χJ)

]
. (C.4)

This implies that if we use the boundary conditions for C2 and χ2 in the action, then

supersymmetry of the action requires using the Am boundary condition. Using the M2

boundary condition leads to the λ1 boundary condition. And so on. This is indeed the

pattern we observed in explicit calculations. A final remark is that on-shell X12 = 0, which

lets us avoid using the M2 boundary condition. This is the reason why supersymmetry of

the bulk-plus-boundary action (4.12) requires the use of only the Am boundary condition

on-shell (see eq. (5.9)).
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