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ABSTRACT: Supersymmetric bulk-brane coupling in Horava-Witten and Randall-Sundrum
scenarios, when considered in the orbifold (“upstairs”) picture, enjoys similar features: a
modified Bianchi identity and a modified supersymmetry transformation for the “orthogo-
nal” part of the gauge field. Using a toy model with a 5D vector multiplet in the bulk (like
in Mirabelli-Peskin model, but with an odd gauge field A,,), we explain how these features
arise from the superfield formulation. We also show that the corresponding construction
in the boundary (“downstairs”) picture requires introduction of a special “compensator”
(super)field.
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1. Introduction

The last decade saw a revival of interest in theories with extra dimensions and brane-world
scenarios. In 1996, Horava and Witten [ showed that 11D supergravity on a manifold
with boundary (or on S!/Zs orbifold) arises as a low energy limit of the strongly coupled
heterotic string theory. Three years later, Randall and Sundrum [] demonstrated that a
simpler 5D construction with a cosmological constant in the bulk is sufficient to naturally
solve the gauge hierarchy problem and leads to interesting phenomenological consequences.

A minimal supersymmetric version of the Randall-Sundrum scenario, with just the
tension terms on the branes, is by now well understood [J—[f]. Some progress has been
made in including additional matter fields on the branes (see ref. [[f] and references therein),
but the construction is not yet complete. One interesting observation of ref. [[f] is that the
supersymmetric bulk-brane coupling (in the orbifold picture) in both the 11D and 5D cases
has two basic features in common:

1) the field strength of the bulk gauge field is shifted so that it satisfies a modified
Bianchi identity; and

2) supersymmetry transformation of the “orthogonal” component of the gauge field
(C114p in 11D and Bs in 5D) is modified accordingly.

Besides these modifications, the simplest version of the coupling (to the 2-Fermi order)
requires only adding the Noether coupling term to the free brane Lagrangian.

Supersymmetric bulk-brane coupling can be nicely formulated using 4D superfields.
The original idea is due to Mirabelli and Peskin [§] (who worked with supermultiplets in-
stead of superfields); in the superfield language, the method was developed and generalized
to dimensions higher than five in ref. [J]. Although this method has already been widely
used, the basic features of the bulk-brane coupling listed above have not yet been explained
by it. In this paper, we will fill in the gap.

In our discussion, we will use the toy (globally supersymmetric) model of Mirabelli
and Peskin, with an abelian 5D vector multiplet in the bulk. In the orbifold picture, the
4D vector (A,,) and the 4D scalar (As) components of the gauge field Ay have opposite
parities. Instead of choosing A, to be even, as in ref. [§, we will choose it to be odd
to make contact with the supergravity constructions (where Capc in 11D and B,, in 5D
are odd). This also flips the parities of the 4D superfields used to describe the 5D vector
multiplet, compared to refs. [§, [g). We will find that this model reproduces the features of
the supergravity bulk-brane coupling surprisingly well.

Our key results are as follows. In the orbifold picture (OP), recovering the right com-
ponent structure of the coupling from its superfield form requires a certain field redefinition
that makes all bulk fields except As non-singular. In the boundary picture (BP), the sin-
gularity of As is replaced by the presence of a special boundary compensator K. In both
cases, the boundary condition on the odd part of the gauge field is A,, = J,,, where
Jm is a function of the brane/boundary fields. This boundary condition is required for

supersymmetry of the action in the BP, but not in the OP.



The structure of the paper is best seen from the Contents. We note here only that
the agreement with the supergravity constructions is achieved in section [L.5, and more
explicitly in the example of section [.4.

2. Mirabelli-Peskin model with odd A,,

In this section, we review the essentials of the 5D gauge supermultiplet, both in the com-
ponent formulation and using 4D N = 1 superfields; OP and BP are defined here. Our
conventions are the same as in ref. [[L1]; supersymmetry conventions follow closely those of

Wess and Bagger [[[3].

2.1 5D vector multiplet

The abelian 5D gauge supermultiplet consists of a gauge field Ay (M = 0,1,2,3,5), a
real scalar @, a symplectic-Majorana spinor (gaugino) A; (i = 1,2), and a triplet of real
auxiliary fields X, (a = 1,2,3). The Lagrangian for this multiplet is

1 1 )~ . 1
L5 = =3P ™M = 00 00M® — SRTYOu N + 5 X, X, (2.1)

The corresponding supersymmetry transformations are
S Ay = iHT M A,
Sn® = iHIA;
67—[Xa = ﬁi(aa)ijI‘M(?MAj
o\ = 5;{Az + 54;/\17 (2.2)
where we made the following split,
i = (EMNFuN + TMOn @My, S5\ = Xa(oa)id Hy, (2.3)

separating out the auxiliary part of the transformation. (The supersymmetry parameter
H; is a constant symplectic-Majorana spinor.) Under the supersymmetry transformations,
the Lagrangian varies into a total derivative. This is to be compared with the general
variation, when one also finds a total derivative plus terms that vanish only when equations
of motion (EOM) are used. The total derivatives in these two cases are similar, but differ
in the fermionic parts. In the case at hand, we find

6Ls = (EOM) + oy KM, 6yL5 = Oy KM, (2.4)
where
KM = —FMN§AN — 600M P — %TVTMMZ'
KM = —FMN§, Ay — 61, 00M D + %KZTM S Ay — %KZTM S A (2.5)

The total derivatives are irrelevant on the orbifold, but essential in the boundary picture.



2.2 OP, BP and N =1 supersymmetry

In the orbifold picture (OP), the 5D space is R'"* with a Z; symmetry realized as a
reflection 2° = z — —z. The “fixed point” at z = 0 is a 4D plane that we call a “brane”.
In the boundary picture (BP), the 5D space is M = RY3 x [0, 4+00), with boundary at
z = 0. In both cases, it is convenient to make the “5 — 47 split, using M = {m,5}
(m =0,1,2,3), and to convert symplectic-Majorana spinors into pairs of two-component

spinors: A; — (A1, A2), H; — (11,712). This leads to the following form of the Lagrangian, !

1 1 1 1 1 1
L5 = _ZanFm" -3 s 0 — Eamcpamcp — 585@95(1) + 5Xm)q2 + §X§

. B . B 1
— %Alo'mam)\l + %)\Qdmam)\g + 5()\285)\1 — )\135)\2) + h.c.| . (2.6)

When a brane/boundary is present, we can preserve only a half of the N = 2 supersym-
metry, parametrized by n; and 1. Without loss of generality, we set

m=mn, m2=0. (2.7)

This gives the following N = 1 supersymmetry transformations,

OonAm = inomA + h.c.
OpAs = —nAa + h.c.
0p® = —inky + h.c.
A1 = 0" Fpn + (X3 — 05P)n
e = —i0"NFy5 — 0" N0 ® — i X127
6, X192 = 2iM0sA1 — 215" O A2
0p X3 = —indsAg — no™OmA + h.c. (2.8)
In the orbifold picture, we must choose parity assignments for all fields and parameters.

We are interested in the case when 7 is even and A,, is odd, which leads to the following

set of assignments, 2

even : A5, )\27 q), X12, m odd : Am, )\1, Xg, n2 . (29)

With these assignments, the Lagrangian is even, whereas the equations of motion and
supersymmetry transformations are parity covariant.

n our notation, Frn = OmAn — OnAm, Fims = OmAs — 05Am, X12 = X1 +iXs.
2Under the Zs reflection, each field f(z, z) is mapped into f(z, —z) = P[f]f(z, +z) with P[f] = £1. We
call P[f] = +1 fields “even” and P[f] = —1 fields “odd”.



2.3 N =1 superfields V5 and P,

N = 1 supersymmetry is most conveniently described in terms of N = 1 superfields. For
the 5D vector multiplet, we need two 4D N = 1 superfields: a gauge superfield Vo and
a chiral superfield ®2. 3 If we take V3 in the Wess-Zumino (WZ) gauge (see appendix
for a discussion of this choice), then the relation between the component bulk fields and
components of the superfields is given by [{, [L]]

Vo=(0, 0, 0; Ap, A\, X3-0;9)
Py = ((I) + iAs, —i\/§>\2, —X12). (210)

Here and henceforth we represent superfields by listing their components in a definite
order (see appendix [A]). The supersymmetry transformations (R.§) are reproduced by the
following superfield transformations,

5, Va = 1Q + Q) Va2 + A2(n) + Aa(n)!

3y @2 = (nQ +7Q) P2 + 205A2(n), (2.11)

where the compensating gauge transformation (keeping Vg in the WZ gauge) is given by

Az(n):<0, %ammm, —mX1>. (2.12)

Similarly, the bulk U(1) gauge transformation,
OuAy = Opu & 0y A = Opu, 0,A5 = Osu, (2.13)
is reproduced by the superfield gauge transformation
6. Vo = Ag(u) + Az (u)f, 0,82 = 205A2(u) (2.14)

with the following parameter,

Asz(u) = <%u 0, 0) . (2.15)
2.4 Superfield Lagrangian

The Lagrangian L5 is gauge invariant and, therefore, should be constructed out of gauge

invariant superfields. Two basic gauge invariant superfields are 4

1 1
Zy = 05V2 — (@2 + &), Wy = ~11"DDDa Vs . (2.16)

3The subscript “2” on V2 and ®2 indicates that these are bulk superfields. We reserve V and & for
denoting brane-localized superfields.

“We hide the spinor index a on W2 by contracting it with another spinor. For the definition of the
supersymmetry operator (), and the covariant superspace derivative D, see ref. .



Their components are related to the bulk fields in the following way,

Z2 = ( — q), )\2, —’L'X12§ —L'mb5, a5>‘1, 65(X3 - 85(1)) )
. 1 - _mn ma 7y
nwz = ( —_ 7/77)\1, e [U(Xg, - 85@) + 10 nan] 9 770- am)\l > (217)

V2
The superfield Lagrangian that reproduces L5 up to a total derivative is given by
1
4
_ / d26d25[éV2D“mDaV2 + zﬂ, (2.18)

Lh = /d29 W2 + h.e. + /d29d2§ Z5?

where the second form is particularly suited for deriving superfield equations of motion (and
boundary conditions) and allows us to omit the overall superspace integration.® Writing
LL in components and comparing with s, eq. (B.6), we find

1
[,/5 =L5— 85Y,, Y = (I)(Xg — 85@) + 5()\1)\2 + hC) (2.19)

In terms of the actions, on a manifold with boundary M = R3 x [0, +-00), we have

Sg:/ L. 55:/ L5 = Si=2S85+ Y’ (2.20)
M M oM

3. Bulk-brane coupling in superfields

In this section, we construct supersymmetric coupling of the bulk 5D gauge multiplet to
the brane/boundary. The coupling gives rise to a boundary condition Vg 0y , where J
is a function of brane localized superfields V, ®, and a special compensator superfield K
that, in the orbifold picture, corresponds to the singular part of ®.

3.1 Boundary picture

In the previous section, we arrived at the following superfield action on a manifold with

boundary M,
1 .
St :/ [—VZDDQDV2 + zﬂ. (3.1)
M L8
Its general variation gives

1 —
55% = / {— Zzé@z + h.c. + (ZDDQDV2 — 235Z2)5V2] — / 2Z2(5V2 (32)
M oM

®The superspace integral f d*6d? is implicit in the expressions for actions and Lagrangians in the rest
of the paper. Note also that we omit total 9,, derivatives, as they are irrelevant in both the orbifold and
boundary pictures. Total 05 derivatives, however, are kept.



The bulk equations of motion, therefore, are 6

I 1 —
DDZs = 0, Z171721)V2 — 20575 =0, (3.3)

while the natural boundary condition, obtained by requiring the boundary piece of 45} to

vanish for arbitrary §Va, is 7

Z, 2. (3.4)

This is the reason why Sf is the right action for lifting on the orbifold with odd Zg (that
is, with even Vg and odd ®3). Coupling bulk fields to brane localized matter would make
this boundary condition inhomogeneous [[L1].

In this paper, we are interested in the other case, when Vg is odd and ®5 is even
(therefore, Zq is even). The appropriate action is easy to guess. We define

S’/:Sg+/ 2Z2Va. (3.5)
oM

Its general variation gives the same equations of motion in the bulk, but the boundary
term and, therefore, the natural boundary condition are now different:

oM

This shows that S? is the right action for lifting on the orbifold with odd V.

Adding boundary interaction that leads to the boundary condition Vg 27 is now
straightforward. For the complete bulk-plus-boundary action we take

1
S =S5+ 54—/ 2723
2 Jom oM

1

=S+ = Ly +/ 272(Va —J), (3.7)
2 Jom oM

where L4 is a part of the boundary Lagrangian that does not depend on the bulk fields

and is supersymmetric on its own. The general variation of the action gives the required

boundary condition:

5S = (EOM) + / 2Vy —1)6Zy = v, 2. (3.8)
oM

However, despite being written in terms of superfields, the action is not yet guaranteed to
be supersymmetric. Supersymmetry transformations of Vg and ®3, given in eq. (2.11),
are a combination of the standard piece (with the linear supersymmetry operator acting on

them) and a special gauge transformation. As a result, the action can be supersymmetric

SEquations of motion for chiral superfields are found by applying DD to what comes out from the general
variation. See ref. [B] for more details.

"The symbol 9 is used to denote boundary conditions in both the boundary and orbifold pictures. In
the orbifold picture, it means “on the positive side of the brane”, at z = 0.



only when it is gauge invariant. With Vg appearing in the action explicitly, this can be
achieved only if the gauge and supersymmetry transformations of J match those of V.
That is, the action is supersymmetric provided J transforms as follows,

0,3 = AP (w) + A (W), 6,0 = Q+TQI + AT () + A (), (39)

where the superscript “(+)” indicates restriction of the bulk quantity to the boundary.

One can construct J = J(V, ®) with the above transformation laws. However, this
inevitably requires relating bulk and boundary gauge invariances and leads to a rather
strange form of the coupling. Another way to satisfy eq. (B.9), motivated by the orbifold
picture construction (see below), is to introduce a special boundary superfield K with the
following transformation properties,

0K = A5 (w), 6,K = (nQ +7Q)K + A5 (). (3.10)

If we now define

J=K+K'+G, (3.11)

with G = G(V, ®) transforming as a gauge invariant quantity,
.G =0, 6,G=nQ+nQ)G, (3.12)

then J transforms precisely as in eq. (B.9). This way we do not need to relate the bulk gauge
transformation to a boundary one, which means that introducing the superfield K increases
gauge symmetry of the action. Therefore, we can call K a “compensator” superfield.

With the superfield K present, we do not need a boundary gauge transformation, so
that, for example, G = ®'® is a valid choice. Note also that K does not appear in Ly,
but comes only with J. As a result, its equation of motion is

DDz, Yo. (3.13)

As this coincides with the restriction of the bulk equation of motion for @2, eq. (B.3), to
the boundary, our construction is consistent.

3.2 OP with singular ®,

In the orbifold picture, the bulk-plus-brane Lagrangian, corresponding to the bulk-plus-
boundary action (B.7), turns out to be given by

1 — 2
L= gV21)1)2Dv2 +|Zo — 2G8(2)| + L45(2). (3.14)

The first part of it, explicitly showing Vg, is gauge invariant (up to a total d,, derivative).
As Z is gauge invariant, the brane-localized term G must also be invariant under the bulk
gauge transformation for the Lagrangian to be supersymmetric.



The full square structure of the interaction is required to guarantee that equations of
motion for the bulk and brane fields are consistent with each other. We have

oL 1 _—o _
v, = 10D DV2 —20; [22 - 2G5(z)] ~0
oL 0G 0Ly
— =9 —4\Z2 —2G6(2)|—=+ —=—=7 =0 3.15
fy = 06 { 1(22 - 26800 5 + S | =0, (3.15)
so that both equations require Zs to have the same singular part,
Zy =2Gd(z) +n.s., (3.16)

where “n.s.” stands for non-singular terms. As Zs = 05Va — %(@2 + <I>2T), the singular
term can arise from a jump in the odd superfield Vg,

5V = 26(2)Vo ™) 4+ ns., (3.17)

or from the even superfield ®5 having a singular part. If we write

Py = Py + 4K4(2), (3.18)

with @ being non-singular, we find that eq. (B.14) gives rise to a boundary condition
Vo, PI=K+K +G, (3.19)

which coincides exactly with the boundary condition found in the boundary picture. More-
over, the gauge transformation of ®3, eq. (R.14), when split into the singular and non-

singular parts, gives
5. K = AST(w), 6,2 = 205A5(u) — 4AST (w)8(2), (3.20)

which implies that the gauge and supersymmetry transformations of K are exactly as in
eq. (B.10). We conclude, therefore, that the boundary compensator K corresponds to the
singular part of ®45 in the orbifold picture.

3.3 OP with non-singular ®,

There is another way to approach bulk-brane coupling in the orbifold picture. Let us
require that ®5 be non-singular. This forces us to modify gauge and supersymmetry

transformations of ®4 in a way that makes them non-singular, which gives

5 By = 205 An(u) — 4AALT (1)5(2)
5, @3 = (NQ +7Q)®a + 205 Az (n) — AAS" ()3(2). (3.21)

With this modification, Zs is no longer gauge invariant

5.7y =2 [A2<+>(u) + (A (u))q 5(2). (3.22)



Therefore, the right bulk-plus-brane Lagrangian now is

__ 2
L= éVzDDZDVZ + (22— 235(2)] " + £ad(2), (3.23)

where J is required to transform as in eq. (B.9) in order for £ to be supersymmetric. As
in the boundary picture, we are lead to J of the form (B.I1)), explicitly containing the
compensator K. Note that, unlike the boundary picture case, we can make a replacement

A () — Ag(n) = A1( (3.24)

) |Va=3
in the supersymmetry transformations of J, K, and ®2, and the Lagrangian (B.23)) would
still be supersymmetric without using boundary conditions.

The two orbifold picture constructions are, obviously, related by the field redefini-
tion (B.1§). The advantage of the formulation with a singular ®5 is that it avoids explicit
appearance of the compensator K. We will see more explicitly how the two approaches are
related when we consider the component formulation.

4. Bulk-brane coupling in components

In this section, we show how to go from the superfield bulk-brane coupling established in the
previous section, to its component form. In the boundary picture, we find that the Y-term
of ref. [[i] arises naturally from the extra superfield boundary term in SZ. In the orbifold

picture, we find that in order to arrive at the form of the coupling established for the

Horava-Witten and Randall-Sundrum scenarios, one has to do a partial field redefinition.

4.1 Boundary conditions

In both the boundary and orbifold picture, the boundary condition is given by eq. (3.19).
As J is a real vector superfield, we write its components as follows (see appendix [A])

J = (Cy, x5, My; Iy Ay, D). (4.1)
With V3 being in the WZ gauge and given by eq. (R.1()), the boundary condition (B.19)
splits into two sets of component boundary conditions. The first set requires the three
lowest components of J to vanish:

Cr=xyj=M;=0. (4.2)

The second set gives the actual boundary conditions in the component formulation,

A 20y M E N, Xs—0:0 2 D). (4.3)

,10,



4.2 Compensator (super)field

The set of restrictions on J, given in eq. ([.2), fixes K up to a single real field K. To see
how this happens, we first define the components of G and K in a general way

G = (CG'7 XG> MG7 Gma )‘Ga DG)7 K= (¢K7 ¢K7 FK) (44)
Writing J = K + K + G in components, we find
Cj=ok + ¢ +Ca xs=—iV2K +xa, Mj=—2iFg + Mg
I = —i0m(oK — ¢%) + Gmy Ay =2Aa, Dj=Dg. (4.5)

The restriction (f.2) now gives three equations on the components of K, which leave un-
determined only the imaginary part of its lowest component. Denoting the latter by K,

we have

1 ] ] 1
K= (—=Co+ ik, - v ). 1.
( 5Cc + 5K, Bre 73 G) (4.6)

With this definition of K, the non-zero components of J become

In=Gm + 0K, INj=Ag, Dj=Dg. (4.7)

Gauge and supersymmetry transformations of the components of K and G can be
found from the superfield transformations given in egs. (B.10) and (B.12), respectively.
(For supersymmetry transformations, eq. ([A.4) is useful.) We find, for example,

]
oupk = §u(+), SydK = V2K
6,Cq = 0, (5770@ =inxag + h.c. (4.8)

Applying these transformations to the lowest component of eq. ({.)), we obtain the follow-
ing gauge and supersymmetry transformations of K,

6K =u) §,K = —nxg + h.c (4.9)

Analogous treatment of the other two components in eq. ([.§) reproduces the boundary
conditions ([L.3) for A,, and A;. Note that these boundary conditions would not arise here
if we make the replacement (B.24)) in the supersymmetry transformation of K.

4.3 Boundary picture

The boundary picture action SZ, eq. (B.3), appropriate for the odd A,,, differs from the
original bulk action S5 by a boundary term that we call Y-term [f, [LT],

S =S5+ / Y”. (4.10)
oM

— 11 —



This Y”-term is a sum of the Y’'-term for the action S, eq. (R.2(), and of the boundary
superfield term in eq. (B.5),

1
Y" =Y +2(Z3 Vs = FusA™ = Z(Mda + huc). (4.11)

) 027

This way we reproduce the Y-term of the form suggested in ref. [[f], with the F},,5A™ term
present. For the total bulk-plus-boundary action (B.7), we find

1
S =S5+ / [Fmg)Am — —()\1)\2 + hc)]
oM 2

. / L1+ 20D, + 2007 + he) = 2F5™] (4.12)
2 Jom
As we will show in section f.2, this action is supersymmetric under the bulk supersymmetry
transformations (R.§) and appropriate transformations of the components of J. We will
find, however, that showing this requires using the boundary condition (f.J) for A,, (and
also the one for Aj, unless we eliminate auxiliary fields).

We can simplify the form of the action by explicitly using some or all of the boundary
conditions (). Using the one for A,,, we obtain

1
S1 = 855+ / [— 5()\1)\2 + h.c.)}
oM

1
+= / L1+ 20D, + 2000 + he)|. (4.13)
2 Jom

Using the boundary conditions for both A,, and A1, we get

1
Sy S5+ 1 / L4+ 22D + (ohs +he))]. (4.14)
2 Jom

We will find that supersymmetry of S; depends on using the boundary conditions for A4,,
and A1, whereas Sy is supersymmetric provided the third boundary condition in eq. ([.3)
is also used. The reason for this is explained in appendix [J.

4.4 OP with singular fields

In the orbifold picture, all §(z)-dependent terms in the bulk-plus-brane Lagrangian (B.14)

come from the following part

(Z — 2G6(z)]2|62§2 -
— A2 = 2xad(2)] [am —2ad(2) + %amam Mo — QyGa(z)H + he.
—[® +2C¢6(2)] [05()(3 — 95®) — 2D (2) — %amam [® + zcga(z)ﬂ

_% (s + 2G6(2)] + %[X12 9iMGb ()] [ X + 2iME6(2)]. (4.15)

- 12 —



Dropping some total 05 derivatives, irrelevant in the orbifold picture, the total Lagrangian
can be brought to the following form

L= L5+ [Ls+ B1]d(2) + Bad(2)* + B3d'(2), (4.16)
where

Bi = 2Xo\g + 2ixqo ™ Ome — iX {5 Mg + h.c.
—2F,,5G™ 4 2®Dg + 2C50,,0™®

By = —4xgAg — 2ixgo"OmX g + h.c.
—2G,G™ + 2C60,0"Cq + 40 Dg + 2Ma M

Bs = —2xg) + QCG'(Xg - 35(13). (4.17)

This Lagrangian, by construction, is supersymmetric under the original supersymmetry
transformations (R.g) of the bulk fields. However, its §(z)-dependent terms happen to be
more complicated than those in the (more complicated) supergravity theories. We will see
next that this apparent paradox can be resolved by a simple field redefinition.

4.5 OP with singular A;

(]

From eq. (B.1§), we know that Zs — 2Gd(z) is non-singular. Using the component forms
of Zs and G, eqs. (R.17) and (f4), respectively, we find that the following fields,

® = &+ 200(2)
X2 = Ao — 2xad(2)
X5 = X9 — 2iMgo(2)
X3 = X3+ 200 (2), (4.18)

are non-singular.® A glance at eq. (.15) shows that transforming to the new fields absorbs
most of the §(z) terms. Performing the field redefinition, and omitting the tildes, we find

£=rc+ [54 +20D¢ + 2(Me)e + h.c.)] 3(2), (4.19)

where Eé}—) is obtained from the original Lagrangian Ls, eq. (B.6), by replacing F,5 with
Funs = P + 2G 0 (2). (4.20)

Performing the redefinition (f.1§) in the supersymmetry transformations (R.§) requires
using the transformations of the components of G. Since G transforms as in eq. (B.13),

$When we say that a field is non-singular, we mean that it is non-singular when equations of motion are
used. Note that we reserve the word “on-shell” to mean “when auxiliary fields are eliminated.”
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its components transform according to eq. (A.4). After a short calculation, we find the
following modified supersymmetry transformations of the bulk fields,

OnAm = iNomA + h.c.
OpAs = —nAa — 2nxgd(z) + h.c.
9y® = —inAa + h.c.
A = """ Fpn + (X3 — 05P)n
dphe = —i0" [ Fs + 2Gp6(2)] — 0" 10m® — iX12n
6pX12 = 207051 — 2A¢0(2)] — 206 ™ O Ao
0pX3 = —indsAa — no™ 01 + h.c. (4.21)

The modifications can be summarized as follows: 1) replace Fy,,5 with F,,,5, 2) modify the

transformation of As by adding the following singular piece
88 A5 = —2(nxa + h.c)d(2), (4.22)

and 3) modify the transformation of Xjo (the even auxiliary field) by terms that make
it non-singular when the boundary conditions ({.d) are used. When auxiliary fields are
eliminated, we need only the first two prescriptions. Therefore, in the on-shell formulation,
we match the supergravity bulk-brane coupling construction of ref. [f].

Note that after the redefinition ({.1§), we still have one singular field left: As. From
eq. (B-16) and the boundary conditions ([£.d), we have

Fs +2Gm0(2) = 1.5, Am 2 G+ 0K = As = 2K5(2) + n.s. | (4.23)

We see that the singular part of As is directly related to the compensator field K. If we
redefine A5 to make it non-singular, we find that its supersymmetry transformation also
becomes non-singular:

2{5 = A5 — 2K5(Z) = 6,712{5 = —nA2 + h.c. (424)

If we now replace A5 with 25 in the expression for Fp.s5, eq. (.20), we find that G,, gets
replaced by J,, = Gy + 0 K:

Foms = Fis + 2Gmd(2) = Fis + 2Jm6(2). (4.25)

As we will see next, after this final field redefinition we come exactly to the construction
in which the superfield ®5 is non-singular from the start.

4.6 OP with non-singular fields

In the case with non-singular @2, the bulk-plus-brane Lagrangian is given by eq. (B.23).
As the lowest components of J (unlike G) vanish, C; = x; = M; = 0, the component
form of the Lagrangian is simple without any field redefinitions:

£=rc+ [54 120D, + 2\ + h.c.)] 3(2). (4.26)
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As before, we must replace F,,5 by F,5 that is now given by
Fms = Fins + 2Jm5(2) (427)

Superfield supersymmetry transformations are now different from those in eq. (R.11)). They
are modified as in eq. (B.21)) so that the transformation of ®5 is non-singular. We should,
however, make the choice: whether or not to make the replacement (B.24). Because of the
last statement in section [i.3, the component Lagrangian will be supersymmetric without
using boundary conditions provided we do make the replacement (B.24). The component
supersymmetry transformations then become

Sy Am = inomA1 + h.c.
5, A5 = —nAg + h.c.
0p® = —inky + h.c.
A = """ Fpy + (X3 — 05P)n
dpAe = —i0™T[Fns + 2J0(2)] — 0" 105 ® — X127
6 X12 = 2i[05 A1 — 2X;0(2)] — 2m8™ Om A2

(SnXg = —i7765)\2 — ’I’]O’mamxl + h.c. (428)

This differs from the original transformations (2.§) by 6(z)-dependent modifications that
are now all covered by one simple rule [{, i, [[I]]: the modifications must make the trans-
formations non-singular when the boundary conditions are used.

We conclude that there are two alternative simple forms of the bulk-brane coupling
in the orbifold picture: one with the compensator K appearing explicitly via J,,, and the
other where the role of the compensator is played by the singular part of As. The two
formulations are related to each other by the redefinition (f.:24) of As.

5. On-shell coupling

In this section, we go on-shell (eliminate auxiliary fields) and check explicitly that the bulk-
plus-brane/boundary actions we constructed are indeed supersymmetric. We find that
some boundary conditions have to be used for supersymmetry in the boundary picture. At
the end of the section, we give an explicit example of a coupled bulk-brane system which
makes contact with the supergravity construction of ref. [ﬂ]

5.1 Modified Bianchi identity

As we established, in the orbifold picture, a part of the bulk-brane coupling prescription
consists in replacing F,5 with F,,5 both in the Lagrangian and in the supersymmetry
transformations. Let us now generalize this to the following shift

Fun = OuAN —OnAv —  Fux = Fun + Bun. (51)
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On-shell (X, = 0) and after the shift, the bulk Lagrangian (R.]) turns into
1 1 |~
) = — A FN = S0yt e - %AZPMaMAi , (5.2)
and the corresponding supersymmetry transformations become
SnAn = iH' Ty A
on® = iHIA;
ol = (EMNFyn +TM Oy d)H;. (5.3)

Supersymmetry transformation of the bulk Lagrangian now produces not only the total
derivative, but also extra terms involving Byn:

- 1 i .
OnLs = O KM — S FMNoy Bun — S T A O Fan
KM = —pMNG, Ay — 6,00 D + %KZTM S, (5.4)

The last term in 0y L5 is the famous contribution due to the “modified Bianchi identity.”
Note that in the boundary picture, we have Byn = 0 and the total derivative term is
important; in the orbifold picture, Byn # 0 and the total derivative is irrelevant.

5.2 Boundary picture
The bulk-plus-boundary action in the boundary picture is given by eq. (B.7),

1
S =S +/ [Fm5Am — 50+ h.c.)]
oM

1
+—/ [54+2¢DJ+2(A2AJ+1~L.C.)—2Fm5jm]. (5.5)
2 Jom

Supersymmetry variation of S5 produces the following boundary term,
~ 1
6,55 = / (—K%) = / [— F™8, Ay + 6,9050 — = (Aady A1 — Adyha + hoc)]. (5.6)
oM oM 2

To find the variation of the total action, we need to know supersymmetry transformations
of Jpm, Ay, and Dj. We know that components of G transform as in eq. (A.4), so that, in
particular, ?

0yGm = inomAc + Om(nxa) + h.c.
57])\0 = O'mnnGmn +inDg
0yDa = 15" OmAg + h.c. (5.7)
From eq. (.7) and the supersymmetry transformation ([L.9) of K, it then follows that
Opdm = inJmXJ + h.c.
Ay = """ Jpn + 1Dy
5,7DJ = Na " OmAy + h.c. (5.8)

9In our notation, vVmn = Omvn — OnVm, Gmn = OmGn — OnGm, Jmn = OmJIn — Ondm.
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Using these transformations together with the ones for the bulk fields, eq. (2.§), we find

oS = |:770'mn)\2(an — Jmn) + hoc. + (A" — Jm)énmel}' (5.9)
oM

For the action ([.13), obtained from S by using the A,, boundary condition, we have
5,51 = / (9™ X (Fy = ) = 0™ (= Xg) P + e (5.10)
oM
For the action ([.14), obtained from S; by using the A\; boundary condition, we get
1 mn i my BY
52 = [ (5007 (B = Jm) = 510"t = K)o
oM
. 1 o
—%?7)\2(35‘13 + Dy) = 510" (3 = Xs)0m® + h.c.] . (5.11)

We conclude that each action is supersymmetric, and in each case supersymmetry of the
action depends on using some boundary conditions. The basic pattern we observe is: the
more boundary conditions are used to simplify the action, the more of them are needed
to prove its supersymmetry. The way to predict which boundary conditions are needed in
each case is given in appendix [d.

5.3 Orbifold picture
In the orbifold picture, with singular As, we have
By, =0, Bps = —Bsm = 2G5,0(2)
Fonn, = an, ]:m5 = Fm5 + 2Gm5(z) (512)

The bulk-plus-brane Lagrangian is given by eq. (1.19),

L=CLP) 4 L006(2), Ly=Ly+20Dg+2NAg + h.c.). (5.13)
Supersymmetry variation of Eéf) gives
5,L) = {2(770m”)\2 4 hec) G — F [25,7Gm + am(S,gS>A5)] }5(2«), (5.14)

where the terms with G, follow from the By terms in eq. (5.4), and the last term follows
from the modification ({.22) in the supersymmetry transformation of As with

57(78)/15 = —2nxg + h.c. =25, K. (5.15)
Note that the sum of the terms in the square bracket gives 26,.Jp,. For £/, we find
Op(AeAg + h.c. + ®Dg) = —no™" AaGmn + ino"™ AgFms + h.c., (5.16)

from which we conclude that the total Lagrangian £ is supersymmetric, 6,£ = 0, without
using any boundary conditions.
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5.4 Example

To make contact with the supergravity construction of ref. [f], we consider an example
with one brane-localized chiral superfield ® and

G=3®. (5.17)

With ® = (¢, 1, F), the components of G are given by

Co = ¢p*
XG = —ivV2¢*y
Mg = —2iF¢*

Gm = Z(¢am¢* - (b* m(b) + TZJUmE
Ae = V20" Y0 + iV 20 F*
D¢ = 2FF* — 20,,¢0™¢* — (i b + h.c.). (5.18)

The supersymmetry transformation of the compensator K, eq. (l.9), can now be written

as follows, 10

6, K = iV2¢ i + h.c. = i(¢* 6,0 — ¢8,0%), (5.19)

which clearly shows that we cannot “gauge fix” the compensator by making it a function
of the matter fields. To complete the setup, we choose

L4 = /d%d%ﬁ@ = FF* — 0,00 ¢* — (%wm ) + h.c.> . (5.20)

Plugging all the pieces into the bulk-plus-brane Lagrangian (f.13), and eliminating the
auxiliary field F' by its equation of motion,

F = —2iv2(1 + 49) " \p1h, (5.21)

we find that the on-shell Lagrangian is given by £ = Eé}—) + L)6(z) with
L) = (1+4®) [—amqb@mqb* — <%¢0m ) + h.c.)}

+2V2(Ao0 POt + h.c.) — 8(1 + 4®) L (Ag1)) Nath). (5.22)

The bulk Lagrangian Eé}—) is obtained from L5 by replacing Fi,5 with

Fms = Fus +2G0(2), G = i(¢0m¢™ — ¢*0md) + Yomi). (5.23)

The same substitution must be made in the supersymmetry transformations (B-§), and, in
addition, the transformation of A5 should be modified by adding

8 A5 = 2(6,K)3(2) = 2iv/2¢*npd(2) + h.c. (5.24)

Note that this form of §,K implies 57(75)A5 = 2i(¢"dnp — Pp0,0*)(z), which is remarkably similar to
0C114B in eq. (2.16) of the first paper in ref. @]
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With these modifications, the total Lagrangian £ is supersymmetric without using any
boundary conditions.

We observe that the whole construction is identical to the one in supergravity [. It
is also amusing to note that the brane Lagrangian (p.29) appears to be very similar to the
one in supergravity: (1 + 4®) plays the role of the induced metric, Ay is the “gravitino,”
X200 ¢ is the “Noether coupling” term, and (A21))(A2v)) represents 4-Fermi terms.

6. Summary and conclusions

In this paper, we showed that the basic features of the supergravity bulk-brane coupling,
present both in the Horava-Witten (11D) and Randall-Sundrum (5D) scenarios, appear also
in the simplified globally supersymmetric model we considered (Mirabelli-Peskin model
with odd A,,). Using the 4D N = 1 superfield formulation of the model, we showed
that the full square structure [[l] of the coupling in the orbifold picture is present already
on the superfield level (see eq. (B.14))). In transition to the component formulation, one
has to make some field redefinitions (see eq. ({.1§)) in order to arrive at the established
form of the coupling. After the redefinition, the full square structure remains only for the
(Fins + 2G1,6(2))? term in the Lagrangian ([.19). As the redefined fields are non-singular,
the shift F,5 — Fp5 + 2G,0(2) in supersymmetry transformations is required to make
the transformations non-singular. All together, we recover the “modified Bianchi identity”
prescription for the coupling [fl].

The only modification of the supersymmetry transformations, in the formulation of
refs. [, fi], that is not covered by the prescription “make them non-singular” [, f, []
concerns the “orthogonal” component of the bulk gauge field. In fact, A5 is the only field
in this formulation which is singular. We showed that there is another formulation, where
all fields are non-singular, and where the singular part of As is replaced by a compensator
field K. All modifications of the supersymmetry transformations are then covered by one
simple rule.

Although optional in the orbifold picture, the presence of the compensator K is un-
avoidable in the boundary picture construction. In both pictures, the boundary condition
for the odd gauge field A,, is A, 10 Jm = G + 0 K. The gauge transformation of K,
given in eq. (f.9) (compare also with eq. (13.7) of ref. [f]), guarantees gauge invariance
of the boundary condition. On the other hand, its supersymmetry transformation (|.9) is
such that K together with C¢q, xa, and Mg (the lowest components of G) combine into
one chiral superfield (the compensator superfield K, eq. ({.4)).

Our results shed some more light on the general structure of the supersymmetric bulk-
brane coupling. They should also be useful in obtaining a more explicit (component)
form of the coupling in the supersymmetric Randall-Sundrum scenario starting from the
superfield formulation developed in ref. [LJ].
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version of this work.

A. Superfield components

Our supersymmetry conventions follow closely those of ref. [[J]. For real vector and chiral

superfields, we use the following shorthand notation,
V= (C, x, M; vy, \, D), ®= (¢, ¢, F), (A1)
corresponding to the standard component expansions,
V = ifx + %GQM —i0°0[\ + %amamy] + h.c.
+C — 00Oy, + %eﬂ@? D+ %amamc}
& — (1 +i06™00,, + 392520mam)¢ +/2 (9 + %92§amam)w FOPF. (A2)

When supersymmetry transformations have the standard form (without additional gauge

transformations),

0V =0Q+1Q)V, &% =1nQ+7Q)®, (A.3)
the component transformations are as follows,

0,C = inx + h.c.
dpx = 0" N(0OmC + tvy) + nM
5o M = 20(X + 0" O x)
OpUm = inomA + Om(nx) + h.c
A = """y +inD
0D = 0 (MG A + h.c.)

5n¢ = \/5771/}
optp = iV 20" Omd + V20 F
o F = 0 (iV/ 215 ™). (A.4)

Components of gauge invariant superfields, Zs, W2, and G, have exactly this form of
supersymmetry transformations.

B. V; and &, without WZ
Our bulk superfields transform under supersymmetry according to eq. (R.11]),

5, V2 = (1Q +7Q)Va + A2(n) + Az(n)
5;®2 = (1Q +7Q) P2 + 205 A2(n). (B.1)
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Let us proceed without imposing the WZ gauge. If we take the gauge parameter in its

general form, Aa(n) = (a2, a9, f2) , the component transformations become

0,C2 = inx2 +az + h.c.

dpxe = 0"'(0mCs + @) + My — iv20
5y Mo = 21[(A2) + i7" Omx2) — 2i fa
5772},(7%) = inamx(z) + Om(nx2 — iag) + h.c
SyX2y = o™ nuE) + inDo

0nDo = 0pn (T A(2) + h.c.)

Syb2 = V2 + 20502

Spthe = iV 20" O + V20 Fy + 20502

5 Fo = O (iV205 ™ ha) + 205 fo. (B.2)

One can check that on fields defined in the following way,
Ap =08, ®+ids = —05Cy + b
A1 =A@g), A2 =0s5x2 + %7/)2
X3 —05® =Dy, X9 =105My — Fy, (B.3)
the supersymmetry transformations take the form
OnApm = iNom A + h.c. + Opu(n)
OpAs = —nAa + h.c. + Osu(n)
0p® = —inky + h.c.
A1 = 0" Fpn + (X3 — 05P)n
o = —i0""F s — 0" 0m® — i X127
6pX12 = 2005\ — 206" O A2
0p X3 = —indsAg — no™OmM + h.c., (B.4)

which differs from eq. (B.§) only by the U(1) gauge transformation (R.13)) with

u(n) = nxe +Nx2 + 2Im(az). (B.5)

(Note that Re(ag), ag, and fo affect only the transformations of Co, x2, and M,.) If it is
required that we stay with the original field content, then the explicit appearance of xs is
a problem. To deal with it, we can choose the extra superfield gauge transformation in a
way that removes u(n). The simplest choice that does this is given by

7

Aal) = (~g0me+70). 0. 0) (B.6)
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It affects supersymmetry transformations of only A,, and As, while leaving those of Cj,
x2 and My unchanged. A more involved choice,

As(n) = <—i77><2, —% o0y Co + iAm) + nM], —i\ +n_am6mxg> , (B.7)

makes Cs, x2 and My supersymmetry invariant. Therefore, it allows setting these fields to
zero, which would put us into the Wess-Zumino gauge, Co = x2 = M = 0, while turning
A2(n) into the compensating gauge transformation (R.17).

To summarize, the superfield description of the bulk 5D vector multiplet uses two 4D
N = 1 superfields with the following components, !

Vo= (Co, x2, Mo Ap, A, X3—059)

P, = ((I) +iAs + 05Cs, —Z.\/E()\Q — 65)(2), —Xi12 + ia5M2). (B.8)

If the superfield supersymmetry transformations do not involve a Az(n) gauge transforma-
tion, the component supersymmetry transformations differ from the ones in eq. (R.§) by a
X2-dependent U(1) gauge transformation. The latter can be eliminated by a proper choice
of Az(n). Imposing the WZ gauge corresponds to just one of many possible choices.

C. Boundary conditions for supersymmetry

Deriving the component form of the bulk-plus-boundary action (B.7), with V5 and ®5 as
in eq. @), we encounter the following terms,

2Z2(Va — J)| = —®(X3— 05® — D) + Fins(A™ — J™) = [Ao(\ = Ay) + hec]

0262
+ (Cy — Cy) [85(X3 — 05P) — ama%]
i _
+ bXE(Mz — Mj) = (951 +i0™OmA2) (X2 — x7) + h-C-]- (C.1)
Without the WZ gauge imposed, the boundary action then depends explicitly on the gauge

degrees of freedom, Cy, x2, and Ms. The way to eliminate them without imposing a gauge
is to use a part of the boundary conditions contained in Vg 0y ,

0 0 0
G 2Cr x2Exs M E M. (C.2)

This way we arrive at the action ([L19). Having used some of the boundary conditions in
the action, we expect that we would need to use boundary conditions in checking super-
symmetry of the simplified action. As (Vg — J) is a gauge invariant vector superfield, we
have

0y(Va —J) = (nQ +7Q)(V2 - J), (C.3)

"This form of V2 and @2 can be obtained from eq. () by a gauge transformation with the following
parameter: Ag = (%027 %X% %Mg)
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so that its components vary according to eq. (A.4). For example,

57,(02 — CJ) = i?](XQ — XJ) + h.c.
577()(2 —XJ) = Umﬁ[am(cé —Cy) +i(Ap — Jm)] + n(My — M)
op(My — M) = 27[(A1 — Ay) 4 i0"Om(x2 — X)) (C.4)

This implies that if we use the boundary conditions for C5 and o in the action, then

supersymmetry of the action requires using the A,, boundary condition. Using the My

boundary condition leads to the A; boundary condition. And so on. This is indeed the

pattern we observed in explicit calculations. A final remark is that on-shell X715 = 0, which

lets us avoid using the My boundary condition. This is the reason why supersymmetry of

the bulk-plus-boundary action ({.19) requires the use of only the A,, boundary condition
on-shell (see eq. (5.9)).
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